英国为低排量汽车竞赛投入1500万英镑 ACT Expo 2014第1天:鲍勃·鲁兹(Bob Lutz)告诉我们骑摩托车 加拿大的二氧化碳排放量:观点 Tesla + Orange为法国的S型车主提供无线连接 Tesla Gigafactory前往内华达州(非官方泄漏) 6项清洁技术促进剂将在国际范围内推出 特斯拉的首席设计师:到2020年,我们每年将制造和销售EV达500,000 插电式汽车与公用事业通过新的合作伙伴关系通过云进行通信 最容易和最艰难的城市找到上班的公车 警告火灾危险的锂离子电池在斯坦福大学发展 丰田RAV4 EV获得新的租赁激励措施以提高销量 酷转-宝贝,品牌塑造! 亚特兰大的新自行车网络初具规模 第一台梅赛德斯B级电动驱动器现已下线生产—美国仅推出一个月 减少温室气体排放可以帮助美国经济 能源效率新闻自助餐 她飞起来了!太阳脉冲2 #FIRSTFLIGHT(VIDEO) 新的车辆导航工具可以将电动汽车的能源消耗减少多达51% 经实践证明:碳排放权交易节省了十倍的健康福利成本 甜蜜的电动滑板车拥有便携式电池,宝马i3的销量猛增…(EV新闻) 控制世界的最后机会 Car2Go的新区域通行计划意味着在美国和加拿大境内旅行对会员来说非常容易 在房车露营地为电动汽车充电—外观财务 在首次飞行(VIDEO)之前测试太阳脉冲2 Borrego正在圣地亚哥国际机场安装太阳能 如何通过4个简单的步骤将碳污染减少80% 第二届年度Westport电动汽车拉力赛将于5月4日在康涅狄格州举行 在南加州拍摄的特斯拉Model X原型 汽笛酿造—经典汽车与绿色能源的结合 日产推出e-NV200 —电动紧凑型商用车加入日产的全球阵容 埃隆·马斯克(Elon Musk)和金巴尔·马斯克(Kimbal Musk)兄弟的搞笑热闹访谈(视频) 甘蔗制柴油—为美国开发的耐寒,高产,产油作物 Bob Tregilus,Kirsten Hasberg和我在“本周的能源”上聊天(播客) 电动汽车电池价格是否比我们想象的低得多?低于$ 200 / kWh? 2014年美国和欧洲最畅销的电动汽车将… 加州能否在十年内提前向100万辆电动汽车充电? 特斯拉首席执行官埃隆·马斯克(Elon Musk)和首席技术官JB Straubel在挪威问答(VIDEOS) 根据消费者报告,特斯拉汽车公司已经排名第五 高级电动汽车电池研究项目背后的创新汽车 宝马360°电动车远不止是电动车+太阳能 丰田授权WiTricity的无线EV充电技术 福特邀请您通过汽车的眼睛看世界 关于特斯拉Model S如何应对极端损坏并与驾驶员沟通的故事 您从未听说过的最令人印象深刻的复出故事 州长里克·佩里(Rick Perry)支持特斯拉直接汽车销售 万向美国以1.492亿美元收购了Fisker Automotive资产 加州电网迈出了两步,增加了更多可再生能源和电动汽车 加利福尼亚州用于电动汽车基础设施的600万美元 大唐高鸿与驭势科技达成战略合作,构建车联网产业新生态 像乐高一样,优雅的自行车道紧贴在一起

新型数据存储方法采用2D半金属材料 能耗比传统方法少100多倍

盖世汽车讯 人工智能和机器学习技术的出现,正通过物联网、自动驾驶汽车、实时成像处理和医疗领域的大数据分析等新应用,极大地改变这个世界。2020年,全球数据总量预计将达到44ZTB,而且还将继续增长,超过目前计算和存储设备的容量。与此同时,到2030年,相关的用电量也将增长15倍,占全球能源需求的8%。因此,对降低能源需求,同时提高信息存储速度的技术的需求迫在眉睫。

黑科技,前瞻技术,数据存储,2D半金属,数据存储法

图片来源:加州大学伯克利分校

据外媒报道,香港大学教授Xiang Zhang在美国加州大学伯克利分校时带领了一组研究人员,与斯坦福大学教授Aaron Lindenberg的团队合作,研发了一种新型数据存储法:在只有3纳米厚的二碲化钨中,让奇数层相对于偶数层滑动。此种原子层的排列代表着0和1,用于数据存储。然后,研究人员们创造性地利用量子几何:贝利曲率以读出信息。因此,该材料平台非常适用于存储器,还具有独立的“写”和“读”操作能力。而且相比于传统方法,此种新型数据存储方法的能耗少100多倍。

该项研究对于非易失性存储是一项概念性创新,可能会带来技术革命。研究人员首次证明了2D半金属可以优于传统的硅材料,用于存储和读取信息。与现有的非易失性(NVW)存储器相比,新型材料平台有望将存储数据量提高2个数量级,将能耗成本降低3个数量级,而且可以极大地加速实现新兴内存计算和神经网络计算应用。

此前,研究人员发现,当2D材料二碲化钨处于拓补状态时,原子在此类层中的特殊排列会产生一种能带交叉简并点“Weyl node”,而且表现出独特的电子特性,如零电阻传导。此类点被认为具有类似虫洞的特性,电子会在材料的反面穿过。在此前的实验中,研究人员发现,可以利用太赫兹辐射脉冲调整该材料结构,让材料快速地在拓补状态和非拓补状态之间切换,有效地开关零电阻状态。Zhang教授的团队已经证明,只有原子级厚度的2D材料可大大降低电场的屏蔽效应,而且其结构很容易受到电子浓度或电场的影响。因此,2D拓补材料可以将光学操作转化为电气化控制,为电子设备铺平道路。

在该项研究中,研究人员将二碲化钨金属层的三层原子层堆叠在一起,就像纳米大小的扑克牌叠在一起。通过向该原子堆中注入少量载流子或施加垂直电场,让每个奇数层相对于偶数层,在其上下滑动。通过观察相应的光学和电气化特征,研究人员了解到此种滑动是永久性的,除非另一个电激发触发层重新排列。此外,为了读取此类移动原子层之间存储的数据和信息,研究人员在此类半金属材料中采用了非常大的“贝利曲率”。此种量子特性就像磁场一样,可以控制电子的传播,产生非线性霍尔效应。通过此种效应,可以读出原子层的排列,且不影响堆叠。

利用此种量子特性,可以很好地区分不同的原子堆和金属极化状态。此种发现解决了铁电金属因弱极化导致的阅读困难,让铁电金属不仅在基础物理领域引起研究人员的兴趣,也证明了相对于传统半导体和铁电绝缘体而言,此类材料有广阔的应用前景。改变堆叠顺序只会破坏Van der Waals键,因此,理论上比传统相变材料打破共价键消耗的能量低两个数量级,为节能存储设备的发展提供了新的平台,有助于走向可持续的智能未来。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。