亚特兰大的新自行车网络初具规模 第一台梅赛德斯B级电动驱动器现已下线生产—美国仅推出一个月 减少温室气体排放可以帮助美国经济 能源效率新闻自助餐 她飞起来了!太阳脉冲2 #FIRSTFLIGHT(VIDEO) 新的车辆导航工具可以将电动汽车的能源消耗减少多达51% 经实践证明:碳排放权交易节省了十倍的健康福利成本 甜蜜的电动滑板车拥有便携式电池,宝马i3的销量猛增…(EV新闻) 控制世界的最后机会 Car2Go的新区域通行计划意味着在美国和加拿大境内旅行对会员来说非常容易 在房车露营地为电动汽车充电—外观财务 在首次飞行(VIDEO)之前测试太阳脉冲2 Borrego正在圣地亚哥国际机场安装太阳能 如何通过4个简单的步骤将碳污染减少80% 第二届年度Westport电动汽车拉力赛将于5月4日在康涅狄格州举行 在南加州拍摄的特斯拉Model X原型 汽笛酿造—经典汽车与绿色能源的结合 日产推出e-NV200 —电动紧凑型商用车加入日产的全球阵容 埃隆·马斯克(Elon Musk)和金巴尔·马斯克(Kimbal Musk)兄弟的搞笑热闹访谈(视频) 甘蔗制柴油—为美国开发的耐寒,高产,产油作物 Bob Tregilus,Kirsten Hasberg和我在“本周的能源”上聊天(播客) 电动汽车电池价格是否比我们想象的低得多?低于$ 200 / kWh? 2014年美国和欧洲最畅销的电动汽车将… 加州能否在十年内提前向100万辆电动汽车充电? 特斯拉首席执行官埃隆·马斯克(Elon Musk)和首席技术官JB Straubel在挪威问答(VIDEOS) 根据消费者报告,特斯拉汽车公司已经排名第五 高级电动汽车电池研究项目背后的创新汽车 宝马360°电动车远不止是电动车+太阳能 丰田授权WiTricity的无线EV充电技术 福特邀请您通过汽车的眼睛看世界 关于特斯拉Model S如何应对极端损坏并与驾驶员沟通的故事 您从未听说过的最令人印象深刻的复出故事 州长里克·佩里(Rick Perry)支持特斯拉直接汽车销售 万向美国以1.492亿美元收购了Fisker Automotive资产 加州电网迈出了两步,增加了更多可再生能源和电动汽车 加利福尼亚州用于电动汽车基础设施的600万美元 大唐高鸿与驭势科技达成战略合作,构建车联网产业新生态 像乐高一样,优雅的自行车道紧贴在一起 日产LEAF召回— 2013、2014召回用于安全气囊传感器软件的型号 最佳电动汽车城市-ChargePoint的刷新排名 伊隆·马斯克(Elon Musk)写信给新泽西人民 特斯拉Model S的全球销量可能超过25,000 异国雨林的虫子可能打破生物燃料的瓶颈 电动汽车的认知如此之差,+感谢特斯拉(Tesla)改变了人们的认知 电动汽车概念可能会引发洪水 三星的电动车?也许… 电池价格下跌后令人不安的后果 法国电动汽车销量增长55% 特斯拉2013年第三季度财务业绩(实时博客) 兼具“皮囊”和“灵魂”的高手,B级车市场到底有木有?

斯坦福大学研发计算技术 可让自动驾驶汽车根据周围情况自动调整轨迹

盖世汽车讯 现在,虽然有很多自动驾驶汽车在仿真测试或初始测试中取得了瞩目的成绩,但是在真实街道上接受测试时,往往无法基于周围车辆或代理的情况调整自己的行进轨迹,特别是在十字路口或者多车道街道等需要一定协调能力的驾驶场景下。

自动驾驶

自动驾驶汽车与其他汽车(图片来源:斯坦福大学)

据外媒报道,为此,美国斯坦福大学(Stanford University)的研究人员近日研发了一种计算技术——LUCIDGames,该技术整合了基于博弈理论的算法以及一种估计方法,能够为自动驾驶汽车预测和规划自适应路径。

人类通常能够明白周围车辆驾驶员的目标,并能够协商出决策,例如在一个十字路口上,哪一个先走。斯坦福大学的研究人员尝试在自动驾驶车辆上复制此种能力,并将此种复杂行为应用到自动驾驶汽车上,总体目标是让自动驾驶汽车能够识别周围车辆的目标,从而在需要协商的驾驶情境中规划出更合适的行进路径。

自动驾驶

自动驾驶汽车与其他汽车(图片来源:斯坦福大学)

研究人员表示:“我们的研究结合了两种主要的工具,一个是基于博弈理论的算法,一个是估计技术。基于博弈理论的组件在自动驾驶汽车的目标与其他代理(如其他车辆、行人、骑行者等)的目标不一致时,能够推理出其与其他代理的互动内容。另一方面,估计技术能够让自动驾驶车辆在与其他代理互动时,迅速发现其他代理隐藏的目标,例如,所期望的车速、所期望的行驶车道、互动车辆的攻击性等。”

LUCIDGames技术旨在让自动驾驶汽车能够迅速识别周围车辆和行人的目标,让其能够预测到其他代理未来的动作,并在其他代理周围安全行驶,即使在复杂的驾驶场景下也能如此。

该系统由一个“估计器”(识别驾驶员目标的技术)和一个“决策器”(控制自动驾驶转向角度与加速的算法)组成,“决策器”可以根据“估计器”收集的信息识别最适合车辆的行驶轨迹。

研究人员解释道:“一开始,自动驾驶车辆并不知道周围其他车辆的目标,因此估计器能够猜测此类目标。每猜一次,自动驾驶汽车就能够预测接下来几秒其他车辆的轨迹,然后将预测内容与真实情况进行比较,预测最准确的内容就会被保留下来。”

在经过初级训练后,LUCIDGames会重新猜测与此前猜测接近的其它代理的路径,并评估其预测性能。通过每秒重复几次该过程,该技术能够改进猜测内容,并最终猜测出周围其他代理如何移动。

研究人员表示:“利用该技术,自动驾驶汽车也能够清楚何时对自己的猜测有信心,何时不太确定,信心降低。在不确定的情况下,自动驾驶汽车会采取更谨慎的行动,并与其他车辆保持更大的安全距离。”

该技术的预测组件能够让自动驾驶汽车根据驾驶员在街道上遇到的事件类型调整自己的决策。例如,该组件能够确定是否一位驾驶员的行为很有攻击性,从而能够让决策组件相应地调整自动驾驶汽车的轨迹和移动,例如让自动驾驶汽车与具攻击性的驾驶员保持更大的安全距离。没有此类预测技术,不管周围的驾驶员小心翼翼还是具有攻击性,自动驾驶汽车都会执行一样的操作,从而会增加发生事故的风险。

未来,LUCIDGames能够提升自动驾驶汽车的安全性与可靠性,让自动驾驶汽车通过预测周围环境中其他代理的移动和行动,调整自己的移动。截至目前,研究人员只评估了该技术在仿真场景中的性能,现在正计划将其应用于真实的自动驾驶汽车,以进行测试。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。