亚特兰大的新自行车网络初具规模 第一台梅赛德斯B级电动驱动器现已下线生产—美国仅推出一个月 减少温室气体排放可以帮助美国经济 能源效率新闻自助餐 她飞起来了!太阳脉冲2 #FIRSTFLIGHT(VIDEO) 新的车辆导航工具可以将电动汽车的能源消耗减少多达51% 经实践证明:碳排放权交易节省了十倍的健康福利成本 甜蜜的电动滑板车拥有便携式电池,宝马i3的销量猛增…(EV新闻) 控制世界的最后机会 Car2Go的新区域通行计划意味着在美国和加拿大境内旅行对会员来说非常容易 在房车露营地为电动汽车充电—外观财务 在首次飞行(VIDEO)之前测试太阳脉冲2 Borrego正在圣地亚哥国际机场安装太阳能 如何通过4个简单的步骤将碳污染减少80% 第二届年度Westport电动汽车拉力赛将于5月4日在康涅狄格州举行 在南加州拍摄的特斯拉Model X原型 汽笛酿造—经典汽车与绿色能源的结合 日产推出e-NV200 —电动紧凑型商用车加入日产的全球阵容 埃隆·马斯克(Elon Musk)和金巴尔·马斯克(Kimbal Musk)兄弟的搞笑热闹访谈(视频) 甘蔗制柴油—为美国开发的耐寒,高产,产油作物 Bob Tregilus,Kirsten Hasberg和我在“本周的能源”上聊天(播客) 电动汽车电池价格是否比我们想象的低得多?低于$ 200 / kWh? 2014年美国和欧洲最畅销的电动汽车将… 加州能否在十年内提前向100万辆电动汽车充电? 特斯拉首席执行官埃隆·马斯克(Elon Musk)和首席技术官JB Straubel在挪威问答(VIDEOS) 根据消费者报告,特斯拉汽车公司已经排名第五 高级电动汽车电池研究项目背后的创新汽车 宝马360°电动车远不止是电动车+太阳能 丰田授权WiTricity的无线EV充电技术 福特邀请您通过汽车的眼睛看世界 关于特斯拉Model S如何应对极端损坏并与驾驶员沟通的故事 您从未听说过的最令人印象深刻的复出故事 州长里克·佩里(Rick Perry)支持特斯拉直接汽车销售 万向美国以1.492亿美元收购了Fisker Automotive资产 加州电网迈出了两步,增加了更多可再生能源和电动汽车 加利福尼亚州用于电动汽车基础设施的600万美元 大唐高鸿与驭势科技达成战略合作,构建车联网产业新生态 像乐高一样,优雅的自行车道紧贴在一起 日产LEAF召回— 2013、2014召回用于安全气囊传感器软件的型号 最佳电动汽车城市-ChargePoint的刷新排名 伊隆·马斯克(Elon Musk)写信给新泽西人民 特斯拉Model S的全球销量可能超过25,000 异国雨林的虫子可能打破生物燃料的瓶颈 电动汽车的认知如此之差,+感谢特斯拉(Tesla)改变了人们的认知 电动汽车概念可能会引发洪水 三星的电动车?也许… 电池价格下跌后令人不安的后果 法国电动汽车销量增长55% 特斯拉2013年第三季度财务业绩(实时博客) 兼具“皮囊”和“灵魂”的高手,B级车市场到底有木有?

美国研发高级储能材料 可制成超高能量密度的电容器

盖世汽车讯 电容器是现代电子和电力系统的重要组成部分,能够快速存储和释放电能。不过,与电池或燃料电池等其他储能系统相比,最常用的电容器通常能量密度较低,反过来不能在持续工作的情况下快速充放电。

黑科技,前瞻技术,电容器,汽车电容器,新材料

图片来源:劳伦斯伯克利国家实验室

现在,据外媒报道,美国能源部(DOE)劳伦斯伯克利国家实验室(Lawrence Berkeley National Laboratory)研究人员领导的一个小组通过在后处理步骤中,在商用薄膜中引入隔离缺陷,可以将一种常用材料加工成表现良好的储能材料。

人们对降低成本和小型器件的需求不断增长,也推动了高能量密度电容器的发展。电容器通常用于电子设备中,在电池充电时持续供应电源。伯克利实验室研发的新材料最终可以将电容器的效率、可靠性和鲁棒性与大型电池的储能能力结合起来,应用于个人电子设备、可穿戴技术和汽车音频系统等。

研究人员研发的此种材料是一种陶瓷材料,基于“驰豫铁电体”(relaxor ferroelectric)制成,能够对外部的电场快速产生机械或电子反应,通常用于超声波、压力传感器和电压发生器等应用中的电容器。

所施加的电场会促进材料中电子方向发生改变,同时,电场还驱动了存储在材料中的能量的变化,使其不止可用于小型电容器中。要解决的问题是如何优化铁电体,让其能够以高电压快速充放电(数十亿次或更多次),且不会持续造成损害,从而可长期用于电脑和汽车等应用。

研究人员表示:“人们可能在煤气炉上看过驰豫铁电体,点亮炉子的按钮会启动一个弹簧锤,让其敲击压电晶体(张弛振荡器),并产生电压点燃煤气。我们已经证明,此种材料也可成为一些性能很好的储能材料。”

在两个电极之间放置铁电材料,增加电场就能够增加电荷。在放电过程中,可用能量的大小取决于该材料的电子在电场作用下被定向或极化的强度。不过,大多数此种材料在失效之前通常无法承受很大的电场。因此,最根本的挑战是找到一种方法,在不牺牲极化的情况下,尽可能地将电场的强度增加至最大。

于是,研究人员转而采用之前研发的“关闭”材料导电性的方法。通过用高能带电粒子——离子轰击薄膜,可以引入隔离缺陷,此类缺陷可以捕获材料的电子,阻止电子运动,并将薄膜的导电性降低多个数量级。

研究人员首先打造了由称为铌镁钛酸铅的驰豫铁电体原型制成的薄膜,然后在伯克利实验室加速器技术和应用物理部门(ATAP)的离子束分析设备中,用高能氦离子对薄膜进行定向。氦离子撞击目标离子,产生点缺陷。测量结果显示,离子轰击薄膜的能量储存密度是之前报道的两倍多,效率也提高了50%。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。